LE SECOND DEGRÉ

Exercice de motivation : un rectangle a pour périmètre P = 14m et pour aire S = 12m².

Quelles sont les dimensions de ce rectangle ?

Modélisation : Soient x et y les dimensions de ce rectangle, on a :

$$x + y = \frac{P}{2} = 7$$
 et $xy = S = 12$

En remplaçant y par 7 - x on obtient l'équation x(7 - x) = 12 qui peut s'écrire encore $x^2 - 7x + 12 = 0$.

Comment résoudre une telle équation ? La réponse est dans ce qui suit.

1. Fonction polynôme du second degré

Définition 1

On appelle fonction polynôme du second degré toute fonction P, définie sur \mathbb{R} , pouvant se ramener à la forme :

$$P(x) = ax^2 + bx + c$$
 où a, b et c sont des réels avec $a \ne 0$

L'expression $ax^2 + bx + c$ est encore appelée trinôme du second degré.

Exemples:
$$x^2 - 7x + 12$$
 ($a = 1$; $b = -7$; $c = 12$)

$$a^2$$
 $a = 4 : b = 0 : c = 0$

$$5x^2 + 1$$
 $(a = 5; b = 0; c = 1)$

$$(a = 5; b = 0; c = 1)$$

$$(x + 1)(x + 2)$$

$$(x + 1)(x + 2)$$
 peut s'écrire $x^2 + 3x + 2$

<u>Contre-exemples</u>:

2x + 1 est un binôme du premier degré

 $6x^3 + 3x^2 + 4x + 2$ est une expression du $3^{\text{ème}}$ degré

 $(x-1)^2 - x^2$ est du premier degré.

Exercice: démontrer que si deux fonctions polynômes du second degré P et Q sont égales (sur \mathbb{R}), alors leurs coefficients sont égaux.

Notons $P(x) = ax^2 + bx + c$ et $Q(x) = a'x^2 + b'x + c'$.

Dire que les fonctions P et Q sont égales sur \mathbb{R} signifie que **pour tout réel** x, on a :

$$ax^2 + bx + c = a'x^2 + b'x + c'$$
 (*)

En particulier, avec x = 0, on obtient immédiatement c = c'.

L'égalité (**) devient alors :
$$ax^2 + bx = a'x^2 + b'x$$

En particulier, avec x = 1 puis avec x = -1, on obtient respectivement :

$$a + b = a' + b'$$
 et $a - b = a' - b'$

En ajoutant, puis en soustrayant, membre à membre ces deux égalités, on obtient : 2a = 2a' et 2b = 2b'.

On a donc finalement :
$$a = a'$$
; $b = b'$ et $c = c'$

Les coefficients de P et Q sont donc bien égaux.

Définition 2

On appelle <u>racine</u> du trinôme toute valeur de la variable *x* solution de l'équation du second degré :

$$ax^2 + bx + c = \mathbf{0}$$

Exemple : 3 est une racine du trinôme $2x^2 - 4x - 6$.

Exercice: trouver les racines du trinôme $x^2 - 3$:

On résout l'équation $x^2 - 3 = 0$ par factorisation : $(x - \sqrt{3})(x + \sqrt{3}) = 0$ et on trouve

D'une manière générale, comment trouver les racines d'un trinôme $ax^2 + bx + c$? On va voir qu'il existe des

formules. Le principe est de transformer le trinôme pour que la variable x n'apparaisse qu'une seule fois.

2. Forme canonique du trinôme

Cas particuliers

$$x^2 + 2x + 1 = (x + 1)^2$$

$$x^{2} - 8x + 9 = (x - 4)^{2} - 16 + 9 = (x - 4)^{2} - 7$$

Dans les cas ci-dessus les racines sont facilement identifiables :

Résoudre $x^2 - 8x + 9 = 0$ revient à résoudre $(x - 4)^2 - 7 = 0$, ce qui donne après factorisation :

$$(x-4-\sqrt{7})(x-4+\sqrt{7})=0$$

D'où:

$$S = \{ 4 - \sqrt{7} : 4 + \sqrt{7} \}$$

<u>Cas général</u>: transformation de l'écriture $ax^2 + bx + c$

On met a en facteur (possible car $a \neq 0$): $a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)$

Or: $x^2 + \frac{b}{a}x = \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}$

D'où:
$$a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a}\right) = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right)$$

Pour simplifier cette écriture, posons $\Delta = b^2 - 4ac$.

La quantité Δ s'appelle le <u>discriminant</u> du trinôme $ax^2 + bx + c$.

On a ainsi:

$$ax^{2} + bx + c = a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right)$$

<u>Définition 3</u>: Cette dernière expression, de la forme $a(x + \alpha)^2 + \beta$ s'appelle <u>la forme canonique du trinôme</u>.

Cette forme canonique va nous servir au moins à quatre choses :

- dire si le trinôme possède ou non des racines, et lesquelles s'il en a
- factoriser le trinôme lorsque ce sera possible
- connaître le signe du trinôme suivant les valeurs de x
- étudier les variations de la fonction f définie par $f(x) = ax^2 + bx + c$ et tracer sa représentation graphique avec précision (coordonnées de l'extremum)

Exemple: "canonisons" le trinôme $x^2 - 7x + 12$. Cela donne $\left(x - \frac{7}{2}\right)^2 - \frac{49}{4} + 12 = \left(x - \frac{7}{2}\right)^2 - \frac{1}{4}$.

Remarquons que l'on peut également procéder par identification pour déterminer une forme canonique.

3. Résolution de l'équation du second degré $ax^2 + bx + c = 0$

Résoudre $ax^2 + bx + c = 0$ revient à résoudre l'équation : $a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right) = 0$ qui s'écrit encore :

$$\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2} \quad (*)$$

Dans cette dernière expression, tout est positif sauf Δ , ce qui nous permet d'énoncer le théorème suivant :

Théorème 1

Si $\Delta < 0$: l'équation n'a pas de solution réelle.

Si $\Delta = 0$: l'équation a une seule solution $x_0 = -\frac{b}{2a}$. On dit que cette solution est double.

 $\underline{\text{Si }\Delta > 0}$: l'équation possède alors 2 solutions réelles :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

En effet, lorsque Δ est positif, l'équation (**) est factorisable :

$$\left(\left(x + \frac{b}{2a}\right) - \frac{\sqrt{\Delta}}{2a}\right) \left(\left(x + \frac{b}{2a}\right) + \frac{\sqrt{\Delta}}{2a}\right) = 0$$

<u>Remarque</u>: les formules obtenues pour $\Delta > 0$ s'étendent à $\Delta \ge 0$.

Remarque: Si les coefficients a et c sont de signes opposés, alors le trinôme $ax^2 + bx + c$ admet deux racines; en effet, dans ce cas $\Delta = b^2 - 4ac$ est nécessairement positif.

Exemples:

- $x^2 4x + 4 = 0$; $x_0 = 2$; $(\Delta = 0 ; inutile ici : <math>(x 2)^2$)
- $-6x^2 + x + 1 = 0$; $\Delta = 25$; $x_1 = -\frac{1}{3}$; $x_2 = \frac{1}{2}$
- $5x^2 + 6x + 2 = 0$; $\Delta = -4$; pas de racine réelle
- Réponse à l'exercice de motivation : $\Delta = 1$; x = 3 et y = 4.
- $2x^2 + 2(1 + \sqrt{3})x + \sqrt{3} + 2 = 0$; $\Delta = 0$ et $x_0 = -\frac{1 + \sqrt{3}}{2}$.

Attention! Le calcul de Δ est inutile pour des trinômes "incomplets" tels que : $r^2 - 2r = 0$

$$x^2 - 2x = 0$$

 $x^2 - 5 = 0$ etc...

4. Somme et produit des racines (quand $\Delta \ge 0$)

Théorème 2

Lorsque le trinôme $ax^2 + bx + c$ admet deux racines réelles (distinctes ou confondues), leur somme $S = x_1 + x_2$ et leur produit $P = x_1 \times x_2$ sont donnés par :

$$S = -\frac{b}{a}$$
 et $P = \frac{c}{a}$

<u>Démonstration</u>: Si x_1 et x_2 sont ces deux racines, on a :

$$S = x_1 + x_2 = \frac{-b - \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a} = -\frac{b}{a} \text{ et } P = x_1 \times x_2 = \frac{-b - \sqrt{\Delta}}{2a} \times \frac{-b + \sqrt{\Delta}}{2a} = \frac{b^2 - \Delta}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}.$$

Exercice d'application : résolution d'une équation du second degré lorsqu'on connaît déjà une racine : soit l'équation $2x^2 - 5x + 3 = 0$; elle possède une racine évidente $x_1 = 1$. L'autre racine peut aisément se déterminer grâce à S ou P: $P = 1 \times x_2 = \frac{3}{2}$ d'où $x_2 = \frac{3}{2}$. Il est donc inutile dans ces cas de calculer le discriminant Δ .

5. Factorisation du trinôme $ax^2 + bx + c$

Théorème 3

Soit $\Delta = b^2 - 4ac$ le discriminant du trinôme $ax^2 + bx + c$. Le trinôme se factorise ainsi :

- Si $\Delta > 0$: $ax^2 + bx + c = a(x x_1)(x x_2)$ où x_1 et x_2 sont les racines du trinôme
- Si $\Delta = 0$: $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2$.

<u>Démonstration</u>:

- Si $\Delta = 0$, c'est évident en regardant la forme canonique.
- Si $\Delta > 0$, on a : $a(x x_1)(x x_2) = a(x^2 Sx + P) = ax^2 + bx + c$ (d'après le théorème 2).

Remarque : lorsque $\Delta < 0$, comme le trinôme n'a pas de racine réelle, il faut abandonner l'espoir de pouvoir le factoriser (sur \mathbb{R} ...).

6. Signe du trinôme

Étudions le signe de $f(x) = ax^2 + bx + c$.

<u>Cas $\Delta > 0$ </u>: soient x_1 et x_2 ses racines, avec (pour fixer les idées) $x_1 < x_2$. On a alors la factorisation suivante :

$$f(x) = a(x - x_1)(x - x_2).$$

Faisons un tableau de signes :

x	-8		x_1		x_2	$+\infty$
$x-x_1$			0	+		+
$x-x_2$			_		0	+
$(x-x_1)(x-x_2)$		+	0	_	0	+
f(x)		signe de a	0	opposé de a	0	signe de a

Cas $\Delta \leq 0$: on utilise la forme canonique:

$$f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$

Comme Δ est négatif, l'expression entre crochets est positive, le signe de f(x) est donc le même que celui de a.

Pour résumer, on énonce le théorème suivant :

Théorème 4

Le trinôme $ax^2 + bx + c$ est toujours du signe de a sauf entre les racines lorsqu'elles existent.

Et en particulier, lorsque $\Delta < 0$, le trinôme est de signe <u>constant</u>. (Celui de a)

Exemple: résoudre l'inéquation $x^2 - 4x + 1 \le 0$. On a $\Delta = 12 > 0$ et $x_1 = 2 - \sqrt{3}$ et $x_2 = 2 + \sqrt{3}$. Or, ici a = 1 est positif. Donc le trinôme est toujours positif sauf entre ses racines.

Les solutions de l'inéquation sont donc les réels de l'intervalle $[2-\sqrt{3}\ ; 2+\sqrt{3}\].$

7. Représentation graphique d'une fonction polynôme du second degré

Dans un repère $(O; \vec{i}, \vec{j})$, notons C la courbe d'équation $y = f(x) = ax^2 + bx + c$.

Théorème 5

La représentation graphique d'une fonction polynôme du second degré est une parabole.

Elle est tournée vers le haut si a > 0, tournée vers le bas si a < 0.

Son axe de symétrie est la droite verticale d'équation : $x = -\frac{b}{2a}$.

Son sommet S a pour coordonnées : $S\left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right)$

Démonstration :

Procédons à un changement de repère en posant $X = x + \frac{b}{2a}$ et $Y = y + \frac{\Delta}{4a}$.

Ce changement a pour effet de simplifier amplement la forme canonique :

$$y = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$
 soit encore $y + \frac{\Delta}{4a} = a \left(x + \frac{b}{2a} \right)^2$ ce qui s'écrit dans le nouveau repère : $Y = a X^2$.

Ceci est l'équation d'une parabole.

Le signe de a conditionne donc l'orientation de cette parabole ; la première partie du théorème est démontrée. Notons que les coordonnées (x_S, y_S) de l'origine S du nouveau repère (et du sommet de la parabole) peuvent se calculer de la façon suivante :

 $X_S = x_S + \frac{b}{2a}$ et $Y_S = y_S + \frac{\Delta}{4a}$ où (x_S, y_S) désignent les coordonnées de S dans le repère $(O; \vec{i}, \vec{j})$, et

 (X_S, Y_S) les coordonnées de S dans le repère $(S; \vec{i}, \vec{j})$. Et comme on a naturellement $(X_S, Y_S) = (0, 0)$

On en déduit que : $(x_S, y_S) = \left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right)$

Autre démonstration "fonctionnelle" pour retrouver les coordonnées du sommet S :

Partons de : $f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$

Cas 1: a > 0

On a, pour tout $x \in \mathbb{R}$: $a\left(x + \frac{b}{2a}\right)^2 \ge 0$

Donc: $f(x) \ge -\frac{\Delta}{4a}$

La fonction f est donc minorée, sur \mathbb{R} , par $-\frac{\Delta}{4a}$.

Or, si $x = -\frac{b}{2a}$, on a: $f\left(-\frac{b}{2a}\right) = -\frac{\Delta}{4a}$

Donc f admet un minimum $m = -\frac{\Delta}{4a}$ en $x_m = -\frac{b}{2a}$.

Cas 2 : a < 0

On a, pour tout $x \in \mathbb{R}$: $a\left(x + \frac{b}{2a}\right)^2 \le 0$

Donc: $f(x) \le -\frac{\Delta}{4a}$

La fonction f est donc majorée, sur \mathbb{R} , par $-\frac{\Delta}{4a}$.

Or, si
$$x = -\frac{b}{2a}$$
, on a:

$$f\left(-\frac{b}{2a}\right) = -\frac{\Delta}{4a}$$

Or, si $x = -\frac{b}{2a}$, on a: $f\left(-\frac{b}{2a}\right) = -\frac{\Delta}{4a}$ Donc f admet un maximum $M = -\frac{\Delta}{4a}$ en $x_M = -\frac{b}{2a}$.

8. Résumé

Pour terminer, résumons par des illustrations les informations du théorème 1 et du théorème 5 :

	$\Delta < 0$	$\Delta = 0$	$\Delta > 0$
a > 0 parabole tournée vers le haut	$ \begin{array}{c c} y \\ \hline O & -\frac{b}{2a} \end{array} $	V C	$ \begin{array}{c c} & \downarrow & \downarrow & \downarrow \\ \hline O & & -\frac{b}{2a} & \searrow & \chi \\ \hline S & & & & & \\ \end{array} $
a < 0 parabole tournée vers le bas	$ \begin{array}{c c} & & & \\ \hline O & & & -\frac{b}{2a} \\ \hline S & & & \\ C & & & \\ \end{array} $	$ \begin{array}{c c} & S \\ \hline & O \\ \hline & -\frac{b}{2a} \\ \hline & C \end{array} $	V O V C X
	pas de racine réelle	une racine (double) : $-\frac{b}{2a}$	deux racines réelles x_1 et x_2

Les coordonnées du sommet S de la parabole sont $\left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right)$.