On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et telle que pour tout entier naturel n, $u_{n+1} = \frac{3u_n}{1 + 2u_n}$.

- 1-a) Calculer u_1 et u_2 .
- b) Démontrer par récurrence, que pour tout entier naturel n, $0 < u_n$.

On admet que, pour tout entier naturel n, $u_n < 1$.

- c) Démontrer que la suite (u_n) est croissante.
- d) Démontrer que la suite (u_n) converge.
- 2/ Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = \frac{u_n}{1 u_n}$.
- a) Montrer que la suite (v_n) est une suite géométrique de raison 3.

Exprimer, pour tout entier naturel n , v_n en fonction de n .

b) En déduire que, pour tout entier nature n, $u_n = \frac{3^n}{3^n + 1}$.

Déterminer la limite de la suite (u_n) .