L'objectif de l'exercice est de comparer deux suites basées sur une même fonction, l'une étant fonctionnelle, et l'autre récurrente. Chaque partie de l'exercice est indépendante des autres.

Partie A:

Soit la fonction f définie sur $[0; +\infty[$ par $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.

Faire une étude rapide de f. Tracer sa courbe représentative C_f .

Partie B:

Soit la suite (W_n) telle que $W_n = \frac{n}{\sqrt{n^2 + 1}}$, pour tout n entier naturel, soit $W_n = f(n)$.

1/ Placer W_0 , W_1 , W_2 , W_3 , W_4 , W_5 sur l'axe des ordonnées y'y, et les points correspondants de la courbe C_f .

2/ Déterminer $\lim_{n \to +\infty} W_n$.

Partie C:

Soit la suite (U_n) telle que $U_0 = 1$ et $U_{n+1} = \frac{U_n}{\sqrt{U_n^2 + 1}}$, pour tout n entier naturel, soit $U_{n+1} = f(U_n)$.

1/ Placer U_0 , U_1 , U_2 , U_3 , U_4 , U_5 sur l'axe des ordonnées y'y, comme sur celui des abscisses x'x, ainsi que les points correspondants de la courbe C_f .

- 2/ Conjecturer $\lim_{n \to +\infty} U_n$.
- 3/ Calculer la valeur exacte de $\ U_1$, $\ U_2$ et $\ U_3$. Conjecturer l'écriture littérale de $\ U_n$.
- 4/ Vérifier cette nouvelle conjecture par récurrence.
- 5/ Soit g la fonction telle que $g(n) = U_n$.

Après une étude rapide de la fonction g, retrouver graphiquement les valeurs de U_1 , U_2 , U_3 , U_4 , U_5

Partie D:

Soit à nouveau la suite (U_n) telle que $U_0=1$ et $U_{n+1}=\frac{U_n}{\sqrt{U_n^2+1}}$, pour tout n entier naturel.

- 1/ Montrer que la suite (U_n) est à termes positifs.
- 2/ Montrer que la suite (U_n) est décroissante.
- 3/ Montrer que la suite (U_n) est convergente et déterminer sa limite L lorsque n tend vers l'infini.
- 4/ Soit la suite (V_n) définie par $V_n = \frac{1}{U_n^2}$ pour tout entier naturel n.
- a) Montrer que la suite (V_n) est arithmétique. Préciser sa raison.
- b) Calculer V_n puis U_n en fonction de n.
- c) Retrouver ainsi la limite L de la suite (U_n) .