a) Résoudre dans \mathbb{R} : $e^x + e^{1/x} \ge 0$.

On remarquera que $e^{1/x}$ impose $x \neq 0$.

Comme $e^A > 0$ pour tout A réel, sous réserves que A existe, la seule condition qu'impose $\frac{1}{x}$ est $x \neq 0$.

En conséquence, pour tout $x \neq 0$, on aura $e^x > 0$ et $e^{1/x} > 0$, soit $e^x + e^{1/x} \ge 0$.

On conclue que tout x réel non ul est solution : $S = \mathbb{R}^*$.

b) Résoudre dans \mathbb{R} : $e^x + e^{-x} \le 2$.

On peut utiliser $e^{-x} = \frac{1}{e^x}$, soit : $e^x + \frac{1}{e^x} \le 2 \iff \frac{e^{2x} + 1}{e^x} \le 2$, d'où : $e^{2x} + 1 \le 2e^x$, puisque $e^x > 0$ (pas de changement de sens de l'inéquation).

On peut aussi multiplier les deux membres de l'inéquation initiale par e^x , sans changement de sens de celle-ci :

$$e^x + e^{-x} \le 2 \iff e^x(e^x + e^{-x}) \ge 2e^x \iff e^{2x} + e^0 \le 2e^x \iff e^{2x} + 1 \le 2e^x$$

$$e^{2x} - 2e^x + 1 \le 0 \iff (e^x - 1)^2 \le 0$$
, ce qui impose $e^x - 1 = 0$.

$$e^x - 1 = 0 \iff e^x = 1 \iff x = 0$$
.

On conclue : $S = \{0\}$.