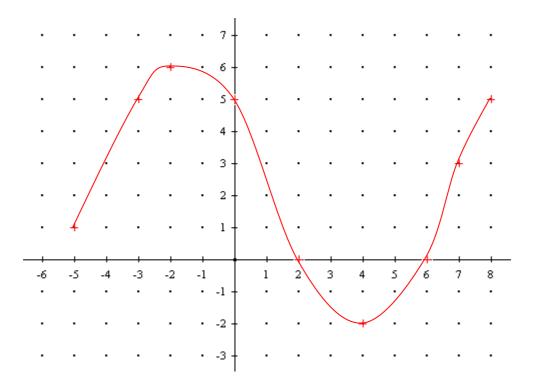
Soit la fonction f représentée ci-dessous.



1/ Donner son ensemble de définition D_f .

On constate que chaque $x \in [-5; 8]$ a une image f(x), hauteur (ordonnée) y à laquelle passe la courbe représentative de f au dessus ou en dessous de l'abscisse x.

2-a) Lire les images de -3, 2 et 7 par f.

Au dessus de x = -3, on lit y = f(-3) = 5. En x = 2, on lit y = f(2) = 0 (le point est situé sur l'axe x'x).

Au dessus de x = 7, on lit y = f(7) = 3.

b) Lire les antécédents de 5 par f.

On recherche tous les x dont l'image y a pour hauteur 5, soit vérifie f(x) = 5.

On lit: $x_1 = -3$, $x_2 = 0$, $x_3 = 8$.

Les nombres $\{-3, 0, 8\}$ sont les antécédents de 5 sur l'ensemble D_f .

2-a) Donner le sens de variation de f sur l'ensemble de définition.

f est croissante de [-5; -2] sur [1; 6],

f est décroissante de [-2;5] sur [6;-2],

f est croissante de [5;8] sur [-2;5].

b) Dresser le tableau de variation de f.

X															
f(x)	1	7	5	7	6	7	5	7	0	7	-2	7	0	7	5

ou, pour alléger le tableau :

$$x$$
 -5
 -2
 5
 8

 $f(x)$
 1
 7
 6
 2
 2
 3
 3

3/ Préciser le maximum et le minimum de f sur D_f .

La valeur maximum de f sur [-5; 8] est +6 (ordonnée la plus haute), atteinte en x = -2.

La valeur minimum de f sur [-5; 8] est -2 (ordonnée la plus basse), atteinte en x = +5.