Déterminer la limite de f en α :

1/
$$f(x) = 2 \ln (x - 3) + x$$
 pour $\alpha = +\infty$.

Si
$$x \to +\infty$$
, alors $x-3 \to +\infty$, d'où $\ln(x-3) \to +\infty$

$$\lim_{x \to +\infty} f(x)$$
 est alors de forme $+\infty + \infty$, donc : $\lim_{x \to +\infty} f(x) = +\infty$.

$$2/ f(x) = 2 \ln (x-3) + x \text{ pour } \alpha = 3.$$

Remarque: $\ln A$ n'est calculable que pour A > 0, ce qui impose ici x - 3 > 0, soit: x > 3.

Ceci impose que x tende vers 3 par valeurs positives.

$$\lim_{x \to 3^+} \ln(x - 3) = \lim_{x \to 0^+} \ln x = -\infty \text{ , donc } \lim_{x \to 3^+} f(x) = -\infty \text{ .}$$

$$3/ f(x) = x \ln \left(1 + \frac{1}{x}\right) \text{ pour } \alpha = +\infty.$$

Constatons tout d'abord l'indétermination: Si $x \to +\infty$, alors $\frac{1}{x} \to 0$ et $1 + \frac{1}{x} \to 1$.

En conséquence : $\ln\left(1+\frac{1}{x}\right) \to 0$ et $x \ln\left(1+\frac{1}{x}\right)$ est indéterminé, de forme $0 \times \infty$.

$$x \ln\left(1 + \frac{1}{x}\right) = \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}}.$$

On pose $h = \frac{1}{x}$, avec $h \to 0$ lorsque $x \to +\infty$.