1/ Montrer que les deux propositions suivantes « $10^n - 1$ est multiple de 9 » et « $10^n - 1$ est multiple de 9 » sont *hériditaires* à partir de n = 0.

1^{ère} proposition :

Soit la proposition P_n : « $10^n - 1$ est multiple de 9 ».

Ceci peut se traduire par : $10^n - 1 = 9K$ avec K entier naturel.

Supposons P_n vraie, donc qu'il existe $K \in \mathbb{N}$ tel que $10^n - 1 = 9K$.

Peut-on en déduire que P_{n+1} est vraie, donc qu'il existe $K' \in \mathbb{N}$ tel que $10^{n+1} - 1 = 9K'$?

$$10^{n+1} - 1 = 10 \times (10^n - 1) + 10 - 1 = 10 \times (10^n - 1) + 9$$
.

Comme P_n est supposée vraie : $10^{n+1} - 1 = 10 \times 9K + 9 = 9(10K + 1)$.

On déduit $10^{n+1} - 1 = 9K'$ avec K' = 10K + 1, soit $K' \in \mathbb{N}$.

On a bien prouvé que, pour tout $n \in \mathbb{N}$, P_n vraie implique P_{n+1} vraie.

La proposition P_n est héréditaire pour tout entier naturel $n \ge 0$.

2^{ème} proposition:

Le raisonnement est absolument identique :

Soit la proposition P'_n : « $10^n + 1$ est multiple de 9 ».

Ceci peut se traduire par : $10^n + 1 = 9K$ avec K entier naturel.

Supposons P'_n vraie, donc qu'il existe $K \in \mathbb{N}$ tel que $10^n + 1 = 9K$.

Peut-on en déduire que P'_{n+1} est vraie, donc qu'il existe $K' \in \mathbb{N}$ tel que $10^{n+1} + 1 = 9K'$?

$$10^{n+1} + 1 = 10 \times (10^n + 1) - 10 + 1 = 10 \times (10^n + 1) - 9$$
.

Comme P'_n est supposée vraie : $10^{n+1} + 1 = 10 \times 9K - 9 = 9(10K - 1)$.

On déduit $10^{n+1} + 1 = 9K'$ avec K' = 10K - 1, soit $K' \in \mathbb{N}$.

On a bien prouvé que, pour tout $n \in \mathbb{N}$, P'_n vraie implique P'_{n+1} vraie.

La proposition P'_n est héréditaire pour tout entier nature $n \ge 0$.

2/ Sont-elles vraies pour tout $n \ge 0$?

Le problème est de savoir si ces deux propositions s'initialisent.

1^{ère} proposition :

 P_0 dit « $10^0 - 1$ est multiple de 9 », or $10^0 - 1 = 10 - 1 = 9$.

Donc P_n s'initialise pour n = 0, ce qui prouve que la proposition est vraie pour tout $n \ge 0$.

2^{ème} proposition:

 P'_0 dit « $10^0 + 1$ est multiple de 9 », or $10^0 + 1 = 10 + 1 = 11$, qui n'est pas multiple de 9.

Donc P_n ne s'initialise pas pour n = 0, et bien qu'elle soit héréditaire, elle n'est donc jamais vraie.