On sait que $\ln a + \ln b = \ln (ab)$, or les deux équations suivantes n'ont pas le même ensemble de solutions.

Donner l'explication de ce paradoxe, et résoudre chacune de ces équations.

$$E_1$$
: $\ln (x-1) + \ln (x+4) = \ln 6$.

$$E_2$$
: $\ln [(x-1)(x+4)] = \ln 6$.

En effet, comme on le verra plus bas, l'équation E_1 admet $S_1 = \{+2\}$ pour ensemble solution, alors que l'équation E_2 admet $S_2 = \{-5; +2\}$ pour ensemble solution.

La raison est que ces deux équations n'admettent pas le même domaine de définition.

En effet : $\ln a + \ln b$ impose simultanément a > 0 et b > 0,

tandis que $\ln{(ab)}$ impose le produit ab > 0, donc tout autant a > 0 et b > 0 simultanément, que a < 0 et b < 0 simultanément.

1/ Résoudre dans \mathbb{R} : $\ln (x-1) + \ln (x+4) = \ln 6$.

Toujours commencer par le domaine de définition : Simultanément $\begin{cases} x-1>0 \\ x+4>0 \end{cases} \Leftrightarrow x>+1 \ \underline{\text{et}} \ x>-4 \ .$

On déduit $D_1 =]+1$; $+\infty[$.

On sait que $\ln a + \ln b = \ln (ab)$, d'où : $\ln [(x-1)(x+4)] = \ln 6$

D'où: $(x-1)(x+4) = 6 \iff x^2 + 3x - 10 = 0$, de racines $x_1 = -5$ et $x_2 = +2$.

Seule $x_2 = +2$ appartient au domaine D_1 , d'où : $S_1 = \{+2\}$.

2/ Résoudre dans \mathbb{R} : $\ln [(x-1)(x+4)] = \ln 6$.

Le domaine de définition impose (x-1)(x+4) > 0, soit $D_2 =]-\infty$; $-4[\cup]+1$; $+\infty[$.

$$\ln[(x-1)(x+4)] = \ln 6 \iff (x-1)(x+4) = 6 \iff x^2 + 3x - 10 = 0$$
, de racines $x_1 = -5$ et $x_2 = +2$.

Les deux racines appartiennent au domaine D_2 , d'où : $S_2 = \{-5; +2\}$.

Remarque:

On peut remplacer $\ln a + \ln b$ par $\ln (ab)$ car l'écriture préalable de $\ln a + \ln b$ impose a > 0 et b > 0.

Par contre $\ln(ab)$ ne peut être remplacé par $\ln a + \ln b$ que si a > 0 et b > 0.

Si a < 0 simultanément avec b < 0, on a bien ab > 0.

On peut alors écrire $\ln(ab) = \ln(-a) + \ln(-b)$ ou encore $\ln(ab) = \ln|a| + \ln|b|$.