Soit la suite u définie par $u_0 = 1$ et pour tout entier naturel n, par $u_{n+1} = \sqrt{1 + u_n}$.

Soit la fonction f définie sur $[-1; +\infty[$ par $f(x) = \sqrt{1+x}$.

1/ Montrer que f est strictement croissante.

f est définie, continue sur $[-1; +\infty[$, mais dérivable uniquement sur $]-1; +\infty[$ (tangente verticale en -1).

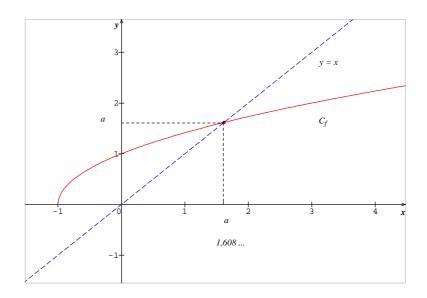
$$f = \sqrt{u} \implies f' = \frac{u'}{2\sqrt{u}}$$
, soit $f'(x) = \frac{1}{2\sqrt{1+x}} > 0$ sur]-1; $+\infty$ [, ce qui prouve que f est strictement croissante.

2/ Soit a la solution de l'équation f(x) = x.

On cherche l'abscisse de l'intersection de C_f avec y = x, $1^{\text{ère}}$ bissectrice des axes.

$$f(x) = x \iff \sqrt{1+x} = x \text{ (ce qui impose } x \ge 0) \iff 1+x=x^2 \iff x^2-x-1=0 \text{ , soit } \begin{cases} x_1 = \frac{1-\sqrt{5}}{2} < 0 \\ x_2 = \frac{1+\sqrt{5}}{2} \end{cases}.$$

Donc $a = \frac{1+\sqrt{5}}{2} \approx 1,61803$ (il s'agit du *nombre d'or*, rapport idéal de deux longueurs a et $b : \frac{a}{b} = \frac{a+b}{a}$).



Montrer que, pour tout réel $x \in [1; a]$, alors $f(x) \in [1; a]$.

f étant continue et strictement croissante, ses images conservent l'ordre des antécédents :

$$1 \le x \le a \implies f(1) \le f(x) \le f(a)$$
, avec $f(1) = \sqrt{2} \approx 1,414$.. et $f(a) = a$.

Donc:
$$1 \le x \le a \implies \sqrt{2} \le f(x) \le a \implies 1 \le \sqrt{2} \le f(x) \le a$$
, soit $1 \le f(x) \le a$.

Si les antécédents x appartiennent à l'intervalle [1;a], leurs images f(x) restent dans l'intervalle [1;a].

3/ En déduire, en raisonnant par récurrence, que pour tout entier $n: 1 \le u_n \le a$ et $u_n \le u_{n+1}$.

Soit $P_n: \ll 1 \le u_n \le a \gg$.

- a) Initialisation: P_0 est vraie, car $1 \le u_0 \le a$, puisque $u_0 = 1$.
- b) *Hérédité*: Supposons P_n vraie $(1 \le u_n \le a)$. Peut-on en déduire P_{n+1} vraie $(1 \le u_{n+1} \le a)$?

D'après 2/: $1 \le u_n \le a \implies 1 \le f(u_n) \le a$, soit $1 \le u_{n+1} \le a$.

 P_{n+1} est donc vraie, si l'on sait P_n vraie (droit de passage).

c) Conclusion: P_n est vraie pour tout n entier naturel.

Soit Q_n : « $u_n \le u_{n+1}$ ».

- a) Initialisation: Q_0 est vraie, car $u_0 = 1$ et $u_1 = \sqrt{2} \approx 1$,414.. font que $u_0 \le u_1$.
- b) Hérédité: Supposons Q_n vraie $(u_n \le u_{n+1})$. Peut-on en déduire Q_{n+1} vraie $(u_{n+1} \le u_{n+2})$? Sachant f croissante: $u_n \le u_{n+1} \Rightarrow f(u_n) \le f(u_{n+1})$, soit $u_{n+1} \le u_{n+2}$. Q_{n+1} est donc vraie, si l'on sait Q_n vraie (droit de passage).
- c) $Conclusion: Q_n$ est vraie pour tout n entier naturel.

4/ En déduire que la suite u est convergente, et déterminer sa limite L .

Les propriétés P_n et Q_n signifient que la suite u est croissante $(u_n \le u_{n+1})$ et bornée, donc majorée $(1 \le u_n \le a)$. On déduit que u est convergente vers L, telle que $1 \le L \le a$.

Passons la relation de récurrence $u_{n+1} = \sqrt{1 + u_n}$ à sa limite, pour n tendant vers $+\infty$.

 $u_{n+1} = \sqrt{1+u_n}$ devient $L = \sqrt{1+L}$, les termes de la suite u s'accumulant sur L, jusqu'à s'y confondre.

On retrouve $L = a = \frac{1 + \sqrt{5}}{2}$, nombre d'or.

