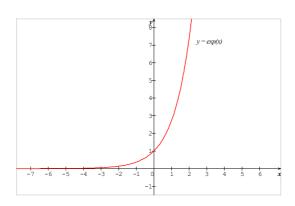
Déterminer les limites suivantes :

Il est nécessaire de connaître la courbe représentative de $f(x) = e^x$, afin de mémoriser $\begin{cases} \lim_{\substack{x \to -\infty \\ x \to +\infty}} e^x = 0 \\ \lim_{\substack{x \to +\infty \\ x \to +\infty}} e^x = +\infty \end{cases}$



a)
$$\lim_{x \to -\infty} e^{x^2}$$
.

Attention: Ne pas confondre $e^{x^2} = e^{(x^2)}$ avec $(e^x)^2 = e^{2x}$.

Si $x \to -\infty$, $x^2 \to +\infty$ et $\lim_{x \to -\infty} e^{x^2} = +\infty$, puisque, en posant $X = x^2$, $\lim_{X \to +\infty} e^X = +\infty$.

b)
$$\lim_{x \to -\infty} \frac{e^{2x} - 1}{e^{2x} + 1}$$
.

Sachant $e^{2x} = (e^x)^2$ et $\lim_{x \to -\infty} e^x = 0$, on déduit $\lim_{x \to -\infty} e^{2x} = 0$, d'où : $\lim_{x \to -\infty} \frac{e^{2x} - 1}{e^{2x} + 1} = -1$

c)
$$\lim_{x \to +\infty} e^{\frac{1}{x^2}}$$
.

On sait $\lim_{x \to +\infty} \frac{1}{x^2} = 0$, d'où: $\lim_{x \to +\infty} e^{\frac{1}{x^2}} = e^0 = 1$.

d)
$$\lim_{x \to +\infty} \frac{1}{1 + e^x}$$
.

On sait $\lim_{x \to +\infty} e^x = +\infty$ et $\lim_{x \to +\infty} (1 + e^x) = +\infty$, d'où : $\lim_{x \to +\infty} \frac{1}{1 + e^x} = 0$.