Soit la suite u, sous forme récurrente, telle que $\begin{cases} u_{n+1} = 2u_n + 1 \\ u_0 = 3 \end{cases}$, pour tout n entier naturel.

En conjecturer une présentation sous forme fonctionnelle.

n	u_n	Conjecture
0	$u_0 = 3$	$3 = 4 - 1 = 2^2 - 1$
1	$u_1 = 2u_0 + 1 = 7$	$7 = 8 - 1 = 2^3 - 1$
2	$u_2 = 2u_1 + 1 = 15$	$15 = 16 - 1 = 2^4 - 1$
3	$u_3 = 2u_2 + 1 = 31$	$31 = 32 - 1 = 2^5 - 1$

On peut conjecturer : $u_n = 2^{n+2} - 1$.

Une démonstration par récurrence permet ensuite de s'assurer du résultat.

Démonstration par récurrence :

Soit la suite u telle que $\begin{cases} u_{n+1} = 2u_n + 1 \\ u_0 = 3 \end{cases}$. Prouvons que $u_n = 2^{n+2} - 1$, pour tout n entier naturel.

Soit la proposition de récurrence P_n : « $u_n = 2^{n+2} - 1$ ».

- a) Initialisation: P_0 est vraie car elle dit: « $u_0 = 2^2 1 = 4 1 = 3$ », ce qui est vrai.
- b) <u>Hérédité</u>: Supposons P_n vraie, soit $u_n = 2^{n+2} 1$. Peut-on en déduire P_{n+1} vraie, soit $u_{n+1} = 2^{n+3} 1$? $u_{n+1} = 2u_n + 1 = 2(2^{n+2} 1) + 1 = 2^{n+3} 2 + 1 = 2^{n+3} 1$.

La proposition P_{n+1} est vraie, dès que P_n l'est.

c) <u>Conclusion</u>: P_n est vraie pour tout n entier naturel.